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A common problem with mobile devices is that when they are used in a 

dynamic environment usability goes down drastically because of external influences. 

Sunlight, sudden movements and interrupted use of the device change the experience 

in a way that the designers of the application did not always take into account. 

Although part of the problem is hardware related, it is possible that designers of 

mobile applications can help improve the situation by taking into account these 

dynamic environments when designing the interface or architecture.

This Thesis will describe the problem that users face when they are using 

mobile devices in places where they were meant to be used: outside and in dynamic 

environments. It will give an overview of the current state of research into mobile 

devices and provide an example of a mobile application targeted for a mobile device. 

Its architecture and interface choices will be discussed along with a special kind of 

user testing. This user test allows testing specifically for external influences and differ-

ent interfaces when users use the device in a mobile envi¬ronment.

The example application has two different interfaces built in, they not only dif-

fer in the graphical representation, but also the way users interact with the device. 

Although the user test was mainly performed to confirm that this special kind of user 

test is in fact possible, the results will be discussed to get an indication of which of the 

interfaces available in the application is better fitted for the used mobile device.
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Chapter 1

Introduction

This is the Master Thesis of R.P. Heuts, written for his graduation to the Uni-

versity of Twente in the Netherlands. This thesis was written while performing 

research at the Information Sciences Institute of the University of Southern California 

in Marina Del Rey, Los Angeles.

This thesis will introduce and describe a common problem encountered while 

using mobile devices in dynamic environments: usability goes down drastically when 

a Personal Digital Agent (PDA), cell phone or mobile gaming device is used outside or 

in a highly dynamic environment.  This is one of the problems encountered when 

developing a mobile application or porting an existing application to a mobile device. 

This Thesis has been divided into two parts, the first part will introduce the topic and 

discuss existing research featuring this topic. The second part will introduce a mobile 

software solution that was developed during the research, especially the architecture of 

the software will be dicussed.

The mobile software solution has been ported from an originally PC based 

application. The technical design of the application has been adapted for mobile usage, 

as this is closely related to the interface design. The technical design will be discussed 

in more detail than the interface because the it is based on the PC interface. The appli-

cation is an educational tool for studying and learning a foreign language and the cul-

ture accompanying the language. A more complete overview of the application will be 

given when the technical design of the application is handled.

This section will continue to introduce the topic, goals and motivation for this 

research. The second chapter will discuss related work concerning mobile learning, 
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mobile interface design and mobile device input. The third chapter and start of the sec-

ond part of this thesis will discuss the approach taken in this research, introduce and 

discuss the application and research application. It will also describe the different tech-

nical design approaches used to provide a basis to overcome the abovementioned 

problem with mobile devices. After which the fourth chapter will describe the user 

tests and their results. This thesis will be concluded with conclusions and future work 

in chapter five.

1.1 Motivation

A very common problem with mobile devices (even laptops) is that, when used 

outside, usability takes a hit because of mobile usage [Pascoe]. For example the read-

ability of the screen might be very poor because of sunlight interference. Software 

can’t fully solve this problem as this is partly a hardware issue with the screen, but can 

try to reduce the effect by adapting the interface.  Little research has been done in this 

direction as most research is focused on screen size and technical application design 

for mobile devices. And user tests are usually performed in a controlled and well lit 

environment [Gallant][Duh].  Everything changes as the user moves outside where 

there are several external influences on readability and usability. Reading from a 

mobile device screen can be very difficult with sunlight directly hitting the surface of 

the screen, even handling the device can be a challenge when the environment is 

unstable (may it be the workplace or just public transport for example).

Because of the limited research done in this direction this thesis will summa-

rize what has been done and partly evaluate those findings with the use of a user test 

designed for mobile evaluation. During this research an actual software application 

was ported from the PC to a mobile device and a special research version was used to 

evaluate changes to the interface and input capabilities. 

The user test that is used is specifically designed for mobile usage. Instead of 
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doing the user tests in a controlled environment, users can take the device to any place 

they want and perform the user test there. This requires some modifications in the user 

test design and those modifications will be discussed in this thesis. The results from 

the user test are not as important yet; the user test is used to show that user testing does 

not always require a controlled environment with supervisors.

1.2 Goals

This research is based on two research questions, namely:

• What solutions are currently at hand for the problems with mobile 

devices caused by outside environments (light, noise, movement) applicable to the 

interface and input capabilities?

• Is it possible to do user testing where users are in their natural mobile 

environment, instead of a controlled laboratory environment?

Because this thesis does not only focus on research but also the development of 

a prototype, another goal can be added:

• Development of a generic and easily portable framework, and accompa-

nying application prototype which is based on a PC application.

The first research question is more a theoretical question and will be answered 

in the ‘related work’ section of this thesis (chapter 2) this can be seen as the first part 

of the thesis. The second question is a more practical question and will partially be 

answered using the user test (chapter 4). The out come of the third and final goal will 

be discussed in detail in the second part of this thesis. The development platform, the 

software architecture and framework that was created will be introduced and the 

graphical interface will be disccused. 

The overall goal of this thesis is to point out the serious problem that arises for 

the user and developer when using mobile devices in a way they are meant to be used: 

outside and on the move. It will be beyond the scope of this research to present a com-
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plete solution for the problem, especially because part of the problem is in the current 

hardware that is used. In the next section an overview will be given of related studies 

and work that has been done concerning this subject. A large number of experiments 

have been done to study the interaction between user and mobile device. Usually 

though, the actual user tests are done in a laboratory environment and do not concern 

outside conditions. This thesis contains at least one user test using a different 

approach, users can do the user test wherever they are, and whenever they want. An 

extensive manual is provided and several data collecting techniques are used to cap-

ture the interaction of the user with the application and device.

The remaining part of this thesis will discuss the prototype that has been devel-

oped for a mobile device and how the user tests were performed with it. Some parts of 

the software design will be covered and the design of the interface and input will be 

handled. The goal of this is to show how mobile use influences software and interface 

design. 
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Chapter 2

Related Work

This section and first part of this Thesis will introduce the research and experi-

ments related to mobile usage of devices and educational software. A number of dif-

ferent problematic situations can arise when using a mobile device in a dynamic, 

mobile environment. These situations are usually caused by the design of the device or 

interface. A number of topics will be discussed here to identify which problem is 

caused by what design choice. 

The first topic covered is mobile device learning where the focus will be on the 

usage of a mobile device to support mobile learning. The next topic is the design of 

mobile interfaces for mobile usage. And this section will be concluded with a topic 

about the interaction of the user with the device and the input capabilities of mobile 

devices. This section will not cover every detail of the introduced topics, but instead 

will try to give a brief overview of what research is available for the specific topic.

2.1 Mobile Device Learning

Ubiquitous and nomadic computing are becoming increasingly popular, com-

puting devices appear in all kinds of shapes and sizes. Part of this collection of mobile 

computing devices consists of handheld computers or Personal Digital Assistants 

(PDA). PDA’s are generally used for the calendar, contacts and note taking functional-

ity; office functions. This is partly because of the type of user using the device: when 

PDA’s were introduced the price was rather high for the average consumer, it was 

mainly targeted for and bought by business people. This user group would use mainly 

abovementioned functions of the device. As prices dropped and technology advanced, 

PDA’s became available for a much larger user group, and usage of the device wid-
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ened to watching video, playing music, playing games and reading Electronic Books 

(E-Books). 

This growth in functionality is not limited to PDA’s; most mobile phones have 

similar functionality when compared to PDA’s (although they are usually more lim-

ited in screen size). Mobile devices in general have a lot to offer and are becoming 

increasingly interesting for educational purposes.  Because these mobile devices now-

adays come with several communication technologies, collaboration is possible 

between users and different devices. This section will discuss these prominent features 

of mobile devices, starting with extending existing PC applications to a moble plat-

form, then studying and reading using mobile devices.  This section is concluded with 

collaboration techniques for mobile devices.

2.1.1 Extending
Research already has been conducted in extending existing software applica-

tions, usually for the PC to a mobile platform. Using design guidelines a concept map 

creation utility was ported to a mobile application to test whether the design guidelines 

would indeed function as intended and to perform user tests with an actual application 

[Luchini]. Guidelines focussed on preventing cluttering of the interface and providing 

multiple simpler screens instead of one screen featuring all the functionalities. Results 

were promising, most of the guidelines were indeed effective on the mobile device.

This research is extended a few years later, adding a substantial amount of new 

guidelines that focus on visibility, essentialness, usability and representation of inter-

face objects [Luchini-1]. Not only are there new guidelines, a number of new applica-

tions to perform user tests with are presented too, incorporating the new guidelines. 

An important remark in this research about future work is named in the end, the sys-

tem could be used to analyze the effect of such studying aids; to test if these software 

extensions actually contribute to the task of studying.



7

2.1.2 Reading
Studying usually consists of reading a large amount of documents. Mobile 

devices currently seem to be well equipped to support the reading of larger documents. 

PDA’s feature high resolution screens up to VGA and come with a relatively large 

amount of memory to store not only documents but also video and pictures.  Because 

an increasingly amount of users use mobile devices as electronic books, several 

authors argue that mobile devices can be usefully exploited as learning. To take the 

idea a bit further, Sharples [Sharples] proposes that mobile devices could be used to 

accompany  learners throughout their lives tools [Waycott]. This enables users to 

study anywhere, instead of being constrained to a specific location because of a desk-

top pc for example. An important downside of these mobile devices is the limited 

screen size and it might handle very differently compared to reading from paper.

Some studies have already been performed to measure studying and reading 

performance on mobile devices. One of those studies tested if students would perform 

different if they would have the aid of a mobile device while studying for reading pur-

poses and note taking [Waycott]. PDA’s and paper versions of studying material were 

used to evaluate the use of a mobile device for learning. Every student had access to 

both versions of the material (digital and paper version). Before the students started 

studying the material they were asked to fill in a questionnaire to test their expecta-

tions. A similar questionnaire had to be filled in at the end of the study to compare the 

initial expectations and the actual experiences. Concluded was that mobile devices 

change the way one studies by providing a means to study anywhere. But this has a 

downside too, as taking notes is more difficult because of awkward methods of enter-

ing text on most devices. Another more serious complaint by the users was that the 

mobile device forced a different reading strategy as screen size is limited. If mobile 

devices are going to be a major part of studying these limitations have to be overcome. 

In a different research the setup was fairly similar, again students were given 
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PDA’s to use while studying (read intensive studying) [Marshall]. Interviews were 

organized to evaluate the usage of these mobile devices. The conclusion was that the 

downsides named in the previous paragraph are all compensated by fact that the 

device can be used anywhere. This stresses again that mobile devices are to be used 

anywhere to actually be beneficial enough to make extensive use of them.

Another important part of studying is making notes. While it is more difficult 

to write down notes on a mobile device (see section 2.3 for more information on this 

subject) it is easier to take them with you and share them with others. Another option 

with physical paper is to make notes on the paper document itself, this is also sup-

ported in a similar way by a number of software applications on a mobile device with 

the use of a touch screen. 

2.1.3 Collaboration
Mobile devices not only provide a means to read anywhere but usually sport an 

array of communication possibilities. This allows for a more dynamic way of interact-

ing with the device as new content can be transferred to the device, but also allows 

multiple devices to communicate with each other. The latter allows users to collabo-

rate while using the device and thus while studying. Collaborative education is a com-

mon field of research and will not be discussed here; a rather quick overview will be 

given. 

The note taking during studying mentioned in the previous section comes into 

focus with collaboration. Students might share notes and doodles they made during 

class or studying. With a mobile device featuring for example Wi-Fi or infrared these 

notes can be easily shared between devices. Some software even supports live connec-

tions where the doodles made by one user appear instantaneously on the other users 

screen [Myers]. Not only can notes be shared between students, but teachers can have 

direct access to these notes and provide information themselves by sending it to the 

devices of the students.
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Research more specific to mobile devices and collaborative learning concluded 

that the tools they devised for mobile collaborative learning would reduce time spent 

in the several tasks that the system supported, provided new means of cooperation and 

pro-actively helps students when a tutor is not around [Sá]. In this particular paper a 

framework is introduced containing a number of applications and tools for teachers 

and students to collaborate. The tools provide ways to create content, design evalua-

tions and use result analyzing tools. The student’s tool basically contains the informa-

tion and content the teacher created. This setup creates a high level of collaboration 

where the teacher can alter and add content dynamically when needed.

2.2 Interface Design

Interface design for mobile devices has a lot of attention because of the large 

amount of devices currently available. A lot of effort has been invested into adapting 

existing interfaces (usually originally PC based) to a smaller screen. While this is an 

important issue, there has been basically no research done on how to improve the 

resulting interface for actual mobile use. With mobile use meant here is that the device 

is used outside with outside conditions. The next sections will give a short overview of 

what research has generally been done in this field.

2.2.1 Interface Adaption
A lot of software for mobile devices originated on the PC and their functional-

ity is transferred to a mobile device. The difference between the two platforms should 

be fairly obvious here: most important is the screen size and the input capabilities.  

One way to overcome part of this problem is to scale down the interface to fit the new 

screen size. Scaling down an interface brings a whole new range of problems. What 

font size should be used? Can buttons be scaled down? How much scrolling of the 

content can be used? 

Instead of removing and scaling down parts of the interface, a way to increase 
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usability is to add components to the interface that enhance usability, especially for 

mobile devices. A previously researched way of doing is, is to add sound to specific 

parts of the interface [Brewster]. In this research and evaluation a user interface is cre-

ated on a PDA (featuring a touch-screen) consisting of buttons which the users have to 

use to complete a specific task. There are four version of the interface, a version with 

large buttons, a version with smaller buttons and previously named interfaces with the 

addition of sound when a user clicks on the button. Concluded from the results of this 

study is that buttons can be decreased in size when sound is added to the buttons. 

There is a limit to the size to which buttons can be decreased, but adding audio to them 

will positively affect usability.

Adaptive user interfaces are a new phenomenon introduced with mobile inter-

face design. Because a lot of different devices exist with different specifications it is 

unwise to target your software solution to only one of those devices, especially if you 

have a large target audience planned. Devices like cell phones, PDA’s and gaming 

devices all feature a screen with usually different specifications. These specifications 

might differ for example in the number of colors, resolution and size. Instead of hard 

coding an interface for every device, adaptive interfaces can be used that adapt to the 

specifications of the device to display the interface properly without any changes in 

the code [Grundy]. 

These adaptive interfaces might solve the interface problem, but pose another 

(maybe even bigger) problem: application size. Because a lot of information is needed 

to adapt an interface to a specific device the size of the application grows accordingly. 

And especially with mobile devices this might be an even bigger problem than an 

interface that doesn’t display properly; the application won’t run at all. Distributed 

computing offers a solution where interface information and even content can be 

transferred to the device on-demand. Using a network connection or similar technol-

ogy only required information can be present on the device because it is being sent to 
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device when it requests the data. This will cut down the memory requirements and 

new interface adaptations can be added without changing the client software (the soft-

ware present on the mobile device).

2.2.2 Mobile Interface Design
Just scaling down an existing interface does not work for mobile devices; read-

ability will be severely reduced for example. Designing a good font is critical for 

mobile usage by users because reading text from the screen is the primary function of 

this screen usually.  Little research has been done in the field of designing fonts (or 

this information is not available to the public), while a good font can make or break a 

mobile application. There are a number of default guidelines available for designing 

fonts [Kahn], and specific ways to test what font is the most applicable for a software 

solution by using user tests [Benson].

Adaptive user interfaces, already mentioned in the previous section, can be 

very important in the mobile interface design process. A network oriented mobile 

application may have access to multiple service providers and servers for content and 

services. Service providers in a mobile environment can be printers or beamers for 

example. Servers can provide the content and user interface for the device using a 

handshaking technique in order for the server to know the device’s capabilities [Repo]. 

A very dynamic environment appears with perhaps multiple servers, and service pro-

viders appearing and disappearing. A single application running on a device will have 

problems to support all these features and be easy to port to other devices. Adaptive 

user interfaces can be a good solution for this environment as it uses the environment 

it is trying to control.

Another research, also stressing that outside use can seriously influence mobile 

usage of a device, proposes a design repository for mobile interface design [Paelke]. 

This repository includes the creation of a framework for techniques and design solu-

tions and enables goal directed search for design solutions that address specific 



12
requirements and defines the basic structure of the repository. It will feature a collec-

tion of techniques for designing mobile solutions in a way they can be reused includ-

ing solutions that usually are not publically accessible. Also present is the evaluation 

and refinement of the collected techniques to determine possible uses, usability and 

significant features from a design viewpoint in order to provide useful meta-data to 

designers who use the repository. And a standard way of publication of the content of 

the repository in a suitable way that enables fast, goal-directed access; for example a 

web-based interface.

2.3 Device Input

A large number of research papers focus mainly on text input for mobile 

devices [Goldstein][James][Mizobuchi], usually because mobile devices are usually 

quite small; a full size keyboard is not favorable. A large number of text input mecha-

nisms exist: alphanumeric keys, T9 input, on-screen buttons, handwriting recognition, 

etc. While text input is important for some devices, or in some situations, general con-

trol is just as important (for example selecting menus or buttons and scrolling). Usu-

ally a device supports either buttons, or a combination of touch-screen and some 

buttons for interaction. 

Research has been done to find new ways of interacting with mobile devices 

too. Navipoint uses a technique that merges track-ball, analog stick and button 

[Kawachiya]. Using an analog stick and stress sensor, the functionality of a trackball 

can be simulated without interfering with the button function. The PSP has a similar 

merge of technologies, although it merges a glide-pad like function with an analog 

stick to create the analog-pad.

In the next section the analog or continuous input will be discussed, the section 

after that will discuss the continuous freedom versus the discrete robustness.
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2.3.1 Continuous versus Discrete input
With the term continuous input is meant that input is not constricted by the use 

of one-way or multiple-way buttons. Continuous input can be a mouse, touch-screen 

or a track-ball input for example. Instead, discrete input is usually provided by a num-

ber of buttons that direct focus into a specific static direction. Discrete input constricts 

the user to specific directions or even specific interact able interface elements like 

onscreen buttons. 

Some interfaces favor the continous approach, when for example manipulating 

a cursor, or inputting gestures, while other interfaces are more suitable for discrete 

input. Discrete input might be more favorable in a more static interface which consists 

of a limited amount of places where a user can perform a ‘clicking’ action. But not 

only interfaces favor a different way of input, the external environment might cause 

one input mechanism to be more favorable than the other. In a highly dynamic envi-

ronment, for example the before mentioned car, continous input might be difficult 

because of shaking and the lack of imprecise movement. This environment might 

require a more robust input that does not require the user to use precise movements 

like selecting things on a small screen by pointing at it with a finger or stylus. Opposite 

to this is the office environment where a user might prefer more freedom and faster 

input by interacting directly with interface elements by using a touch-screen for exam-

ple.

Touch-screens give a lot of freedom to the user and the designer, but also intro-

duce mobile problems rarely studied in research. A number of papers describe differ-

ent uses of touch-screens or how to improve precision with touch-screens, but none 

discusses the difficulties encountered when used in a mobile environment. One would 

expect less precision when used walking or within a moving vehicle.  For example, a 

number of navigational systems for cars feature a touch-screen that has to be used 

while driving. 
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Although NaviPoint introduces a sound concept, and user tests showed that it 

would indeed compete with current mobile solutions [Paelke] the user test was not 

conducted in a mobile environment (There was no usable mobile prototype available). 

A different approach would be to combine multiple input capabilities of the device as 

has been shown in [Oviatt]. In this research speech recognition and pen-input (touch-

screen) is used to complement each other. Using the touch-screen interface, users were 

able to correct or supplement the commands given by speech to the device. This 

improved the recognition rate and improved general usability of the interface.

Choosing one ‘correct’ input mechanism for a mobile device might not be the 

best option. Combining different input technologies or even giving the user the choice 

at run-time which input to use might improve usability in different circumstances and 

environments.

2.4 Prototype Design

Previously discussed research and topics are all focussed on mobile interface 

design and mobile devices. The prototype discussed in this thesis features a mobile 

interface, but instead of designing a new interface from the ground up, the interface 

from the PC version is largely used in the prototype. This has been done due to time 

constraints during the development stage and because the focus of the second part of 

this thesis is on the software architecture, not specifically on interface design. The 

architecture features a highly dynamic programming interface to support very differ-

ent graphical user interfaces.

A lot of research and user tests are performed for and around laboratory envi-

ronments. This chapter tried to capture and summarize the existing research that has 

been done, to point out that not enough research is aimed at mobile usage of mobile 

devices. While this is a very important subject and the most appearent part of the 

application to the user, before the interface can be implemented the underlaying foun-
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dation has to be created. The foundation for a mobile application can be very specific 

for mobile devices (i.e. targeted for only one device with specific hardware features), 

and the same application targeted at different devices can differ highly within the 

source code. This means that several versions have to be created of one application to 

be able to run the software on the different devices. The prototype that will be dis-

cussed later in this thesis was designed from the start with multiple devices in mind, it 

can be ported more easily because less code has to be rewritten. This thesis will con-

centrate on this development in the next chapters, introducing and explaining the soft-

ware that was developed.

2.4.1 Mobile Design Guidelines
Although no emphasis is put on the graphical interface of the prototype in this 

thesis, the reader should note that there are mobile design guidelines available in liter-

ature. A lot of guidelines are also available on the internet, and usually every (major) 

company has its own guidelines for interface design. The larger SDKs or frameworks 

usually come with a set of design guidelines to keep application appearance similar. 

These guidelines can focus for example on icon design, control placement and screen 

layout. In literature a number of general principles (and or guidelines) can be found 

targeted at mobile interface design. A few of the most common principles [Love] will 

be shortly described here.

2.4.1.1 Context of use
This is the design principle that is the focus of this thesis. The context of use 

tells the designer where the device is going to be used. This can be outside, inside, in 

restaurants or for example in class rooms. This also includes physical disturbances like 

loss of connection, other people being close or the user using the device while running. 

The protoype discussed later in this article has a menu system that was designed to 

allow users to be interrupted. Users can easily see where they were interrupted while 
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using the software and continue working from there.

2.4.1.2 Consistency and learnability
The interface should be similar to a user’s previous experience. This is applied 

to the prototype described in this thesis. The interface is similar to the PC version to 

give users a comparable experience on the mobile device. Instead of designing a new 

interface which users would have to learn to use an already existing and well known 

interface is chosen as the basis for the mobile interface.

2.4.1.3 Flexibility
This principle focusses on the flexibility of the application to adapt to different 

users and their needs. This was the main focus for the architecture of the prototype, the 

architecture supports a very flexible interface that can be adpated in a number of ways 

to suit the users needs. The term flexibility here also includes the way information is 

exchanged between different devices or a desktop PC for example. In the case of the 

prototype, it uses the exact same content files as the PC version and thus is very flexi-

ble with the exchange information.

2.4.1.4 System feedback and support
The concern of this design principle is how the interface provides enough 

information to the user in order to complete tasks. The interface should provide appro-

priate feedback so the user is aware what is happening. An example of a problem 

related to this principle is a user being lost in a hierarchy of menus and sub-menus. 

The menu available in the prototype has been specially designed to overcome this 

problem (the menu will be discussed in more detail in the second part of the thesis.)

Another topic within this principle is the amount of controls and navigation 

information visible on screen. A sliding menu in the prototype tries to overcome the 

problem of interface components being ‘in the way’. 
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Chapter 3

Approach

In the previous chapter existing research in the field of mobile design was dis-

cussed, this section and beginning of the sceond part of this Thesis will introduce the 

system that was developed and used for the research covered in this thesis. The system 

is a real world mobile application ported from an already existing PC version. An 

introduction to this mobile application is given and is briefly compared to the original 

PC version. After which an overview of the architecture will be presented in order to 

point out some of the design choices made while the mobile application was designed, 

these development choices influenced the interface design of the application.  The 

interface design is shortly described to conclude this section and closely relates to the 

next chapter where the actual user tests will be discussed.

3.1 Overview

This research is accompanied by a mobile application, Tactical Language PSP 

(TLPSP). It represents part of a larger PC application: Tactical Language [TL].  Tacti-

cal Language (TL) is educational software; it teaches a user a new language and intro-

duces the culture surrounding that language. This is accomplished by a conceptual part 

where a user learns by means of lessons and a practical part where the user can actu-

ally venture around in a virtual world and interact with virtual characters. The Tactical 

Language system was chosen because it is already widely used, extensively tested, and 

there is a large community of users who have an interest in a mobile version. The 

application also contains a number of different displays which can be used for mobile 

device learning.
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3.1.1 Tactical Language
The conceptual part (the lessons) on the PC version consists of several differ-

ent lesson types, usually starting with a dialog between two characters. Each sentence 

is audible and the characters can be seen in a virtual world interacting with each other 

(making gestures for example) as can be seen in Figure 1. After the dialog in which the 

subjects for the particular lesson are introduced several next parts of the lesson explain 

what happened in the conversation, show how to pronounce the words and sentences 

and explain gestures and common practices when interacting with people from the 

particular culture and during a lesson several questions are asked. There are a large 

number of lessons available, and future version will support multiple languages and 

cultures to learn. Another example of a very common lesson page is the pronunciation 

page, these pages provide words, sentences and parts of sentences to practice with. 

With the use of a speech recognizer the user can test and hear if their pronunciation is 

adequate. Figure 2 shows an example of a pronunciation page, the speaker button 

allows the use to hear the sentence spoken by a native speaker and the microphone 

button allows the user to record their own voice, play it back and let the speech recog-

nizer judge if the pronunciation was adequate.
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One of the main features of TL is the speech recognition, every sentence and 

word in a lesson can be practiced and checked for errors by using the speech recog-

nizer. Some questions require you to respond in speech to someone and even a whole 

conversation can be practiced with the aid of speech recognition. When used for exam-

ple in a lesson, a user can click on a button next to a sentence to practice that sentence. 

After the user has listened to the correct pronunciation the user can record his own 

voice and the speech recognizer will try and recognize it. The software will then use 

the output of the speech recognizer to give advice when the pronunciation was not cor-

rect. 

The practical part of TL is mission based (similar to a video-game), you’ll 

receive instructions at the beginning of a mission (Figure 3) and will have to complete 

the mission within the virtual environment (Figure 4) using the virtual characters that 

are present there. Characters will interact with you and can show emotion depending 

on the user saying correct or incorrect sentences. An aid in the form of a virtual side-

kick is available to help in tense situations and to provide tips.  Verbal interaction is 

Figure 1: Dialog page
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performed by using a microphone and the speech recognizer. Characters in the game 

can react to a number of different responses of the user and as the game progresses the 

difficulty increases.

Figure 2: Pronunciation page
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Figure 3: Briefing before starting a mission

Figure 4: Virtual 3D Environment
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3.1.2 Tactical Language PSP
The mobile version of TL features currently only the conceptual part of the PC 

version. All of the lessons are provided on the mobile device and as much of the lesson 

content as possible is made available to the user.  The mobile device used is the Play-

Station Portable (PSP). There are several technical reasons for choosing this device, 

but one of the main reasons was that the target group already owned the device in large 

numbers. The details of the PSP will be covered in the next section.

The PSP version is intended to be used as an extension of the main application 

on the PC. It can be used for reference and extra training when a PC is not available. 

To fulfill this task all the conceptual content is provided, though in a limited fashion. 

For example, the starting dialog does not feature the virtual environment with the char-

acters interacting but only features the audio and text. During the research the applica-

tion was still in development (this research helped the development of the application). 

Because of this the final version might support more than discussed in this paper. This 

has no impact on this thesis, but should be noted when reading the thesis. Currently, 

the introductory dialogs are present in the mobile version as are the training pages. The 

Figure 5: Dialog page (PSP)
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pronunciation pages feature similar functionality as their PC version counterparts, but 

lack the speech recognition ability.

Figure 5 shows an example of an introductory dialog, and Figure 6 an example 

of a pronunciation page. Information pages are pages containing usually a picture and 

some text; they were easily transferred to the mobile version. Finally there are multiple 

choice pages, usually featuring a question accompanied by an audio fragment and a 

number of answers that can be chosen, Figure 7 shows a multiple choice page. There 

were similar pages in the PC version but required the use of the microphone and 

speech recognizer, as these are currently unavailable on the mobile version they are 

left out for now.

Figure 6: Pronunciation page (PSP)
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The lesson selection menu on the PSP has a similar content structure as the PC 

version; menu groups can be opened and closed in a similar way. The only difference 

is that it is designed to fit on a smaller screen and that a special progress tracking sys-

tem has been added. The mobile application will be used differently than the PC based 

version, instead of using the software for a longer continues time, the mobile version 

might be used in short bursts.  To help users get started more quickly when returning, 

the mobile application keeps track of where the user ended the previous session, and 

what sections the user already finished. The current design of the menu is shown in 

Figure 8. Each lesson shows the percentage of how far the user has progressed in that 

particular lesson, and those percentages combined make up the percentage of the 

group to which the lessons belong to. When a user finishes a complete group it will 

show this with a filled bar and ‘100%’ sign. As has been mentioned in the first part of 

this thesis, this follows the ‘Context of use’ design principle.

Figure 7: Multiple Choice page (PSP)
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3.2 PlayStation Portable and PC Version Comparison

The mobile interface is based on the PC version of Tactical language. The gen-

eral appearance is designed to be close to that of the PC counterpart, but there are a 

number of differences that were introduced to enhance the user experience when using 

the interface on a mobile device. The resemblance stresses the fact that it is an exten-

sion of the PC version, creating a completely different interface could confuse users to 

think that it is a very different product. The differences between the two versions will 

be discussed below.

3.2.1 Less buttons 
Instead of providing quite a number of onscreen buttons, the hardware (physi-

cal) buttons available on the PSP are used. The main reason for this is to save screen 

estate by allowing more content to be visible instead of interface buttons. Another rea-

son is that the PSP user is already familiar with the buttons available on the device, 

and they form the main means of input for it. The PSP does not feature a touch screen 

or real mouse input, hence onscreen buttons are difficult to select.

Figure 8: Menu (PSP)



26
The PC version can have more onscreen buttons because of the larger screen, 

but also because of the mouse input. Buttons are more easily selected with a mouse 

and PC users are already familiar with using large numbers of onscreen buttons. Fig-

ure 9 shows the difference between PC version and PSP (mobile) version. The top 

image is the PC version, featuring a number of onscreen buttons. The image at the bot-

tom shows the PSP version with almost no onscreen buttons, and no onscreen buttons 

are available for major functions (next page, main menu). They are instead mapped to 

physical buttons available on the device.
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Figure 9: PC versus PSP interface
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3.2.2 Toolbar
A number of functions cannot be assigned to hardware buttons because either 

all of the buttons are already used, or the functions are not used frequently enough to 

be assigned to those buttons. These functions are thus assigned to onscreen buttons. 

But because they are not being used frequently enough it would be wasteful to present 

them onscreen all of the time. Instead they are hidden off-screen on a toolbar that can 

appear when the users need to access those functions. The toolbar is represented by a 

label when it is hidden with a small instruction that tells the user which button to use to 

show the full toolbar. A little slide animation was added to attract the user’s attention 

when the toolbar shows itself. Figure 10 shows an example the toolbar. The two but-

tons on the left are used for audio recording and playback, the rest of the buttons repre-

sent a font scaling feature, external USB on/off and a ‘back to main menu’ function.

The toolbar might be a useful extension to the PC version, but the same reason-

ing described above holds here too. The PC version has a lot more screen estate to 

spare and because of that users might find it more useful to see those functions present 

onscreen all of the time. The main reason for applying it to the mobile version was to 

save screen estate for more content, and thus less scrolling for the user.

Figure 10: Toolbar example (PSP)
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3.2.3 Button Layout
At startup of the mobile application an overview of the hardware buttons is 

given. This appeared to be a valuable addition for users not familiar with the PSP or 

the application and that used the application for brief moments of time. Because they 

were not using the software regularly they kept forgetting the functions of the buttons 

or even where specific buttons were placed. A simple startup screen giving a quick 

schematic overview of where buttons are positioned and what function is assigned to 

them can give non-regular users a quick start back into the usage of the application. 

Another advantage is that users don’t have to use the manual every time when they 

forget specific functions or buttons. Figure 11 shows the startup screen on the PSP, a 

schematic overview of the PSP hardware and buttons is displayed.

3.2.4 Menu
The menu in the PC version is using only one screen to display all of the con-

tent in the menu. By clicking on the lesson group names on the left the content of the 

large window on the right changes. This was unfeasible on the PSP because of the lim-

ited screen size. One of the earlier versions of the menu contained two screens, one 

Figure 11: Startup screen (PSP)
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displaying the list of lesson groups, the other the list of lessons. By clicking on a les-

son group name in the first screen the second screen displayed with the lessons 

belonging to that group. While this worked fairly well, users became disoriented when 

returning to the menu, and users had difficulties remembering in what group they were 

located.

The design that is currently used is based on the PC version but is compacted 

into sliding menus. This gives a good overview and serves a number of preferences 

that users might have. For example some users liked having a long list with all the les-

sons so they could scroll down the list. Other users preferred the multiple screen ver-

sion of the menu but agreed that the new menu was very close to that version if one 

opened only one of the groups. Another advantage is that the current menu can be 

extended with subgroups too. If, in the future, subgroups would be added the current 

design would be very easy to adapt to show those groups. With the multiple screens 

version this would result in adding more screens, increasing the confusion of where a 

user is located in the tree structure. Figure 8 displays the menu as it was available in 

the last version on the PSP (version 0.5). The final menu design uses the ‘System feed-

back and support’ design principle. The user has a clear view of what is happening 

because menus open and then show new content instead of disappearing and being 

replaced by the new content.

3.2.5 Console
A similarity with the PC version is the console which is mainly used for devel-

opment. The console can show a number of error and general logging messages. 

Because the PSP has very limited debug functionality, logging capabilities were one of 

the first things added to the framework. A number of messages can be logged, ranging 

from text messages to critical errors. The TLCore class provides a static interface for 

logging which is further handled in the TLDebug class. A window application TLCon-

sole provides a user interface to the messages logged within the TLDebug class. It dis-
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plays any debug message in its window by using the basic text capabilities of the 

Interface Manager. TLConsole is a nice example of how little code is needed for dis-

playing a functional window.

3.3 System Architecture

Because the architecture of the software was influenced by the interface design 

and vice versa a short overview of the system architecture is given. First the PSP will 

be discussed and then parts of the application will be discussed, focusing on how inter-

face and system design were influenced during the development process.

3.3.1 PlayStation Portable
The target device for the application to be ported to is the Sony PlayStation 

Portable. The main reason for choosing this device is the high penetration rate of it in 

the target user group. The PSP is a high performance gaming device at hart, featured 

with a large screen and numerous buttons. It has Wi-Fi networking capabilities and 

supports hardware add-ons (microphone, camera and keyboard for example). The 333 

MHz processor (and second media processor) combined with a dedicated video and 

audio chip provide enough performance for highly visual 3D content to be displayed. 

The PSP features a number of buttons positioned around the device. Besides 

normal buttons a small analog pad (or stick) is available for continuous input, as 

opposed to the four-way directional pad. Most buttons are conveniently placed and 

easily reachable when the device is held in both hands. The PSP lacks a touch screen 

because it is rarely used in conventional games currently.

For development purposes a freely non-official Self Development Kit (SDK) 

can be used, instead of the official SDK from Sony. The latter is only available to the 

larger companies within in the gaming industry, while the first is available to every-

one. The non-official SDK can only be used for prototyping and non-commercial soft-

ware, which suits the purpose of this research. The SDK consists of a number of 
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utilities and libraries to aid the developer while programming for the PSP. While these 

libraries make developing easier, they by no means deliver a framework for applica-

tion development. An additional, already existing framework was used created by the 

author of this article. This framework is introduced in the next section, the actual Tac-

tical Language application was built on top of this framework.

3.3.2 Framework
The framework was created to add some abstraction to the software on the PSP, 

instead of using native function calls (for example the graphics API on the PSP or 

audio library) an abstraction layer provides more general calls to be used throughout 

the application. This provides the option to port the framework to another device or 

platform without having to change the applications running on top of the framework. 

Currently the PSP framework that was created for this research provides: Accelerated 

GPU rendering, audio output and recording, controller input (continuous / discrete), 

graphical cursor handling, file input and output, window manager functions, debug 

facilities, boot loader and configuration file support. These parts will be discussed in 

more detail below.

3.3.2.1 GPU Rendering
This is one of the lower layers of the framework, providing basic functions to 

render graphics to the screen and loading images from files for example. The PSP fea-

tures powerful but very specific graphics acceleration support. If the application would 

have to be ported to another device or platform this would be a major difference and 

would result in large amounts of code rewriting to adapt it to the new platform. While 

designing this more general interface for graphical related functions in the framework, 

the interfaces of existing libraries for other platforms were studied; this would make 

porting to another platform somewhat simpler in the future.

The resulting interface provides a generic encapsulation class for an image in 
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memory (the TLImage class). This class is passed to graphical related functions and 

contains info about the image it contains. The native image representation for the plat-

form can be contained within this class to protect the rest of the application from plat-

form specific usage (for example bit depth or color bit arrangement). The interface 

contains functions for direct rendering to the physical screen or images (TLImage 

class), scaling images and loading images from files. 

3.3.2.2 Audio Output / Input
Similar to the graphical interface, audio interfaces differ heavily between plat-

forms. The PSP lacks even a native audio library, so behind the generic interface that 

was designed the complete audio library had to be implemented. The audio library fea-

tures playback of files and recording of audio to a file. Different audio codecs are sup-

ported but can differ depending on the platform. Codecs can be added or removed 

without the application using the framework knowing. Only one function is used to 

play an audio file, and the file type is determined automatically if the appropriate 

codec is available. This enables changing the audio files (a different compression for 

example) without changing the application. Adding the codec to the framework would 

suffice.

3.3.2.3 Controller Input
User input can differ even on one platform. The PSP fox example supports a 

four-way directional button and an analog stick. Both can be used for controlling a 

cursor but are handled very different within the application code. A layer of abstrac-

tion is provided by encapsulating the controller info into a TLCursor class which con-

tains information about the current position of the cursor and a TLController class 

which keeps track of buttons that are pushed. The framework translates any user input 

(for example from the analog or digital pad) to a cursor position, the application can 

then handle this position instead of handling each controller type differently. If the 
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application would be ported to a platform supporting touch-screen the framework 

would have to be adapted slightly to support the touch-screen input. The framework 

would then translate the touch-screen coordinates to a new cursor position and the 

application would not even know it was handling touch-screen events.

3.3.2.4 Window Manager
This is one of the main functions of the framework, it provides a clean, abstract 

interface for applications to run in a window. Applications are provided with cursor 

positions and button clicks if the window was active during such an event. Windows 

can be moved around or closed by the user and multiple windows can be displayed at 

the same time. Each window can contain a separate application, where each applica-

tion does not know if there are more applications (windows) running. Windows can be 

decorated with borders and buttons or the window can be transparent. The Window 

Manager also supports fullscreen applications, giving the application the whole screen 

to draw too and capturing all control inputs.

The TLWindowManager class features a number of functions to create, destroy 

or move windows. A window contains a TLWindowApplication which is basically an 

abstract class providing a template for the actual application. It provides event func-

tions which are called when the window content should be updated, a button is 

pressed, the cursor is moved or when the window is closed. An actual application can 

be designed on top of those functions.

3.3.2.5 Configuration file support
A lot of design choices can be made while writing code (especially on applica-

tion level). To provide customization without the need to rewrite code, configuration 

file support is available. A number of properties can be entered into a configuration 

file which is then read and parsed by the framework and a clean interface provides 

access to those settings without revealing the underlying file system or configuration 
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file layout.

A configuration file consists of key and value pairs. When a value is needed 

from a configuration file a function is called with the key that matches the requested 

value. The value is then returned by the function and can be converted to a specific 

type (int, string, etc) if needed. Values can be altered in a similar way or created if the 

key did not exist yet.

Using the framework a developer can focus on application functionality and 

use the provided libraries for easy access to the controls, audio system and screen. For 

even more ease, an interface manager is provided that can take over part of the screen 

and dynamically render images, text and buttons without the programmer worrying 

about placement, scrolling and wrapping. The interface manager is another abstrac-

tion, one that disconnects the interface from a specific window or screen size, enabling 

the application to be ported to devices with smaller or larger screens. The interface 

manager accepts a number of arguments to provide some control of how objects are 

rendered to the screen (indentation, horizontal placement, aligning, etc).

The function of the framework is twofold; it provides the developer with an 

easy to use programming interface and provides abstraction, in order for the applica-

tion to be portable to other devices. The Tactical Language application never uses and 

should not use any device dependent function, instead, the framework should be 

extended. This ensures when the framework is ported the application can be easily 

transferred with it, without major rewriting of interface code. Even when very particu-

lar features are used (for example 3D accelerated rendering) the higher levels of the 

application should not directly access them but an (very light) abstraction can be used 

to support other 3D hardware in the future when a different platform is used. Usually 

interfaces are quite similar between different libraries or platforms. Adding this 

abstraction to the framework can make development of other programs using the 

framework more easy too. The framework was designed with flexibility in mind, 
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which uses the ‘Flexibility’ design principle mentioned in part one of the thesis.

3.3.3 Architecture
The complete software solution consists of a number of layers as shown in Fig-

ure 12. The actual application code is on top and the lower levels of the framework are 

at the bottom. While there are a number of layers, the framework is invoked from most 

of the higher layers; hence it is depicted as a ‘shell’ around all the layers except the 

application code which mainly uses the Interface Manager. 

One of the more important abstractions is the interface manager; it provides an 

easy interface to any interactive part of the visible screen. As the framework enables 

the use of multiple windows to be displayed on screen, an application can use these 

windows to display itself, or a number of different applications can run at the same 

time. Because window size and screen size (perhaps due to running the application on 

different devices) can differ quite a lot, the interface manager disconnects the interface 

from the application. The interface manager can draw the same screen content to dif-

ferent screen sizes without changing the actual source code.  This also means that font 

size and other interface components can be scaled dynamically, this specific feature is 

for example used for the font size option in the TL application. The font size can be 

changed by the user and the content is dynamically redrawn and placed. The font scal-

ing feature is an attempt to give the user the option to change the interface whenever 

Figure 12: Application architecture overview
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nessecary to make it more suitable to the situation the user is in. A larger font size 

might help when screen visability is low. This feature also helps if the application is 

ported to another device in the future, the content can be rendered to a smaller or larger 

screen without any modification in the code.

The framework features a number of parts taking care of specific functionality 

in order to provide abstraction and make maintaining the code easier. Although some 

of the framework has been divided into layers, it is not that important as most of the 

framework should be ported anyway when transferring to another device or environ-

ment, because the framework code consists of a lot of device dependent code. Figure 

13 gives a schematic overview of the components of which the framework consists. 

The framework is a set of utilities to provide easier access to the hardware so there is 

no real architecture, but some of the components do have their own specific design and 

architecture (File IO and the configuration-file system for example).

Because the application consists of a lot of content and the content is loaded 

from external files the interface had to be very flexible in order for it to work without 

too much adaptation in code. The Interface Manager solves this problem by rendering 

text and media in a dynamic way, auto-wrapping text and scaling images much like a 

web browser.  Because of the adaptability and ease of implementation the Interface 

Manager is used throughout the application to draw screens.

3.4 Interface Design

The interface of the application is largely defined by how text and images are 

Figure 13: Framework architecture overview
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rendered to the screen by the Interface manager which was described in the previous 

section. The colors and images used in the interface are inspired by the PC version, 

aswell as the general placement of items and text. The design principle ‘Consistency 

and learnability’ applies here. This mobile version is to be used as an extension of the 

PC version, and thus users will be familiar with the interface from the PC version. 

The interface manager’s rendering is up to a degree customizable. Indentations 

can be set, and the decision to place two objects next to each other or below each other 

is also up to the designer. A block of text can be restricted in width and images can be 

scaled to a fixed size. This gives the designer some freedom to define the layout of a 

page. Each type of page is a template that defines how the general layout is which is 

then filled in at runtime.  Content is extracted from the XML and assigned to the pre-

defined places on the page. The Interface manager dynamically places it at runtime so 

the page fits on the visible screen. Most of the templates are created in a way that as 

much related content as possible fits on the screen to prevent scrolling. Most of the 

content consists of text and buttons, of which text is the most important. Because 

screen size is limited on the PSP and very different users might use the application the 

font size is user adaptable at any time. Some users prefer a larger font size with scroll-

ing while others prefer a smaller font size without scrolling.  The font size is adaptable 

at runtime, again the interface manager makes this possible because it will dynami-

cally render the text and wrap it if needed. Appendix C shows a function used in the 

application to render a pronunciation page to the screen. This code is slightly modified 

for this example, but is basically the same. The lines that are printed in italic are API 

calls to the Interface Manager, they are used to add text, images or buttons to the 

screen. For example, the first API call ‘AddText’ will add a text string to the screen 

with the specified color and fontsize. Because it is the first call for that screen, the text 

will appear at the top of the screen. The Interface Manager will render every added 

object to the screen when the ‘Commit’ function is called. It is possible to add more 
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content to the screen but one has to finalize the modification with another ‘Commit’. 

When the Commit function is called the positions of the objects added are calculated 

to fit within the size of the visible screen and text is wrapped for example. These func-

tions show the high degree of abstraction that is present within the application. The 

Interface Manager can handle very different screen sizes without any change to the 

code. As a side note, the parameters that are not shown (and were replaced by ‘...’) are 

used to position the text horizontally and specify if a hard enter should be present for 

example.

During development a number of test sessions were organized to test specific 

parts of the interface. During these sessions users were asked to use that specific inter-

face part and freely comment while using the application. This way a number of 

changes were made early in development. One of the most important was the design of 

the lesson selection menu. Instead of scrolling and a new screen for every lesson 

group, a tab-inspired interface was created so users would not have to switch between 

different screens. Users also made remarks that they forgot where they stopped the last 

time, and if there was a ‘save’ option.  These remarks led to the addition of the pro-

gression info in the menu by means of percentages.

To summarize, the interface was inspired by the PC version, but is largely 

defined by how the Interface Manager renders the page in the end. The templates used 

for the interface manager were designed with the aid of informal user tests, and parts 

of the application were adapted due to the results of these tests.
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Chapter 4

Evaluation

A user test was conducted to evaluate the development state of the application 

and interface.  The user test procedure will be explained first in this section, the docu-

ments used during the user test can be found in the appendix.  After the user test has 

been introduced the user test process will be discussed. The user test was conducted in 

two places because of time constraints. The second smaller user test was needed for 

immediate results while the first user test (concerning more than one hundred subjects) 

will be concluded at a later point. This second smaller user test will be discussed in 

this thesis; the first user test results will be available as an addendum or as a new 

research.

4.1 User Test

The second user test was conducted in a slightly more controlled situation than 

the first user test. This resolved some of the problems that were encountered during the 

first user test, especially the lack of technical support in between user tests and initial 

setup. The PSP can be a difficult device to handle for people without any experience in 

handhelds. The not so common software featuring a foreign language running on the 

PSP made it even more daunting for the user. While the manual (Appendix A) is quite 

elaborate, it can never replace an actual person giving instructions, especially if the 

device reacts differently than stated.

Ten people were in this smaller user test, they were required to complete one 

lesson on the PSP. This lesson was adapted to provide enough content and different 

types of content. An early lesson was used to allow newcomers to complete the lesson 

too. The lesson started with an example conversation featuring two people introducing 
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themselves to each other. After this example conversation a number of theory lessons 

are given to rehearse the words used in the conversation. In these theory lessons users 

can listen to single words. There are a number of information pages in the lesson 

explaining specific cultural procedures during such a conversation. Lastly, there are 

four multiple choice questions present in the lesson requiring the user to listen to an 

audio fragment to answer the question.

The user group that participated consisted of a number of students working at 

the Information Sciences Institute, all of those students were working on Computer 

Science related subjects. The rest of the group consisted of employees working at the 

Information Sciences Institute, again all working on a Computer Science related sub-

ject. The age of the participants ranged between twentyfour and thirtyone.

4.1.1 Remote User Testing
To enable mobile user testing a special user test was developed for user testing. 

This special version of the software is a modified version of the original application 

with only one lesson and a number of data gathering features. A number of modifica-

tions were done to create a self-sustained research application that can handle multiple 

user tests, collect data and save the data in a way it can be retrieved easily. Another 

modification is the appearance of a number of questions before the actual user test 

starts, using this modification the user can be asked what the current conditions are of 

where the user test is taking place. This way the user testing can be done without inter-

ference of a researcher and users can go anywhere they want with the device.

The lesson used in the user test consists of two versions, which are alternated 

randomly between users. One version can be specified as the ‘inside’ interface while 

the other is the ‘outside’ interface. The difference between the two is that the outside 

interface features a higher contrast between interface and text, bigger font size and dif-

ferent input system. While the first two differences are assumed obvious, the third 

might need some explanation. The PSP features an analog stick which can be used to 
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control a cursor for example much like a trackball. The inside interface uses this con-

tinuous method while the outside version uses the digital four-way button to select 

interactive parts of the interface (no real moveable cursor). While the first gives a lot 

more freedom and resembles the more continuous way a touch screen works the out-

side version is much more stable and predictable. This might be favorable in unstable 

outside conditions.

The specially adapted lesson that users will work with will collect live user 

data and store it on the device for future studying. A number of user related features 

will be stored; for example, the time spent on one page, time spent on the complete 

lessons, the number of button clicks, which interface was used and how many ques-

tions were answered correctly. All this data is stored in a file for each user and is 

linked to a questionnaire (Appendix B) that the user has to fill in after the user test. 

The device will give an identification code at the end of the lesson that has to be filled 

in on the questionnaire.  This way the data on the device can be matched and compared 

to the answer the user gave on the questionnaire.

4.1.2 Collecting Data
Although the user test was mainly meant to examine the possibility for doing 

user tests in a mobile environment, the data collected might contain interesting results. 

The focus of the user test is on how well the mobile application works in different 

environments. The larger first user test will contain the most interesting data, but a 

similar processing of data will be done. The most important data collected in the user 

test is the time spent on a page, and the amount of pages visited (browsing back to a 

page will result in more pages spent in the lesson). Two hypotheses follow from these 

data features:

• Users using the outside interface will spend less time on a page than 

users using the inside interface in the same conditions.

• Users using the outside interface will use fewer pages in a lesson (less 
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browsing back) in the same conditions.

The outside interface has a higher degree of contrast and a larger font, the 

hypotheses is that this will be easier to read and will thus speed up the process of fin-

ishing the pages and thus the lesson. Because pages are expected to be easier to read 

and thus comprehend, the hypothesis is that users will browse back less to earlier 

pages.

Besides the outside and inside interface appearance there was a difference 

between controller inputs too. The users using the inside interface used the analog 

stick, or continuous input. The users using the outside interface used the 4-way direc-

tional pad, or discrete input.

4.2 Results

In this section we will be looking at the general outcome of the user test, what 

problems arose during testing and a quick overview of the actual data collected. The 

main focus here is the process of user testing, not the actual data. While some data was 

collected during this smaller user test it is not enough to draw conclusions from it. 

Instead, an overview of the collected data is given and some initial analysis is done to 

predict what might actually be the outcome of the larger user test.

For this smaller user test ten (10) people were asked to perform the user test 

and fill in the questionnaire. Besides that an informal conversation after the user test 

was kept to inquire about any problems during the user test. The users were left alone 

in the location they preferred after the device and user test documents were handed to 

them. Questionnaires were filled in right after the user test by the users and there was 

no time pressure present for any of the users.

4.2.1 Data
For the first hypothesis, the time spent on a page is important. The hypothesis 

was that users using the outside interface will in general spend less time on the lesson 
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than users using the inside interface. This can be measured in two ways, by comparing 

the average amounts of time spend on a lesson and the average time spend on a page. 

First we compare the average amount of time on a lesson, the results can be seen in 

Figure 14. The difference is in seconds, and as can be seen, the difference between the 

outside and inside interface is a full minute.

Instead of looking at the average time spend on a full lesson we can also check 

the average time spend on one page in the lesson. This rules out that users were just 

using a larger number of pages with the inside interface, instead of looking at a page 

longer due to the interface. Figure 15 shows the average time a user studied a page. 

First the average time is calculated for every user, after which an average is taken of 

all the users using a specific interface. As can be seen, not only the overall time 

decreases when using the outside interface, as has been shown in the previous para-

graph, the average time a user spends on a page has decreased too.

Figure 14: Average time spend on complete lesson (seconds)
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Next we compare the average number of pages that a user spends within a les-

son. This was the second hypothesis which predicted that users using the outside inter-

face will require fewer pages (less browsing back) within the lesson. Figure 16 shows 

the resulting data from the user test. There is a slight difference in the number of 

pages, again in favor of the outside interface. On average one and a half pages less are 

required when using the outside interface.

Finally we compare the results of the questionnaire, only sections two and 

three of the questionnaire are used in this comparison, as sections one and four are not 

Figure 15: Average time spend on one page (seconds)

Figure 16: Average number of pages for a complete lesson
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focused on usability. First we compare the results between the outside interface and 

inside interface on basis of section two of the questionnaire. These questions focused 

on the input mechanism (discrete versus continuous). To compare scores, answers to 

the questions are graded. If the answer is positive (users liked the input mechanism) a 

positive grade is given. If the answer is negative (users disliked the input mechanism) 

a negative grade is given. For example:  If the answer to the first statement of section 

two (“Controlling the cursor was easy”) was “Strongly agree” the grade appointed was 

2, if the answer was “Tend to agree” the grade 1 was appointed. The opposite is true 

for the negative questions (-2 and -1). If the answer was “Don’t know” or “Neither 

agree nor disagree” the grade 0 was appointed.

Figure 17 shows the average grade of both interfaces. A large difference can be 

seen in how users graded the input mechanisms. The outside interface which features 

the discrete input is strongly favored instead of the continuous control.

A similar approach was taken with the answers to section three of the question-

naire. Again were the answers to the statements graded and the average score com-

pared. Section three of the questionnaire focuses on the actual interface. As can be 

seen in Figure 18, the users again favored the outside interface for easier use (one 

should note that the appearance question in this section was included in the grading)

Figure 17: Average grade given to section two (Questionnaire)
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4.2.2 Discussion
The previous section showed what data is available and how it could be ana-

lyzed. There is currently not enough data available to actually draw conclusions from 

it, but nevertheless the data that is available shows hints of a difference between the 

inside interface which featured the nicer graphics, smaller font and continuous input 

and the outside interface.  After the larger amount of data has been analyzed and there 

is a definite difference between the two styles of interaction between mobile device 

and user, further tests can be done to pinpoint what exactly makes the most difference. 

Is the controller input for example the most important difference, or is it the font size. 

As time was limited, these user tests were beyond the reach of this research and thesis. 

This section will further discuss the actual process of user testing and problems that 

arose.

The first larger user test is still being conducted when this was written. This 

implies some sort of problem, as the planning was that the results could’ve been 

included in this thesis. The reason for this delay is not a technical problem, nor the 

lack of test subjects. The actual problem can be found in the way the user tests were 

left at the remote testing site. Instead of giving the users and people who would offer 

Figure 18: Average grade given to section three (Question-
naire)
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the user test to the users a reason to test, we just plainly asked them to perform the user 

test we had prepared, to which they happily agreed. This in itself is not a problem, the 

smaller second user test proved that remote testing is not a problem with the setup we 

have.  But because there was no reason for the users to do the actual user test, there 

was no benefit for the user, the PSP and questionnaires were forgotten after a while. 

This was especially the case when someone who was interested enough stumbled upon 

a peculiarity in the menu (which would not have affected the user test). This major 

problem was solved later by explaining that the software being tested would improve 

an actual piece of software that they would be able to get in the future. We focused too 

much on the technical support of the user test (providing manuals and an easy testing 

interface) than on providing the user with a drive to actually perform the user test.

Data collection was no problem in the smaller user test; only one user skipped 

the screen that was showing the user test identification number that had to be filled in 

on the questionnaire. In a next user test that screen could be featured with a timer, or 

should require a specific key combination to exit. None of the users had any questions 

or complaints about handling the device, the manual provided enough information for 

even users who had never used the device before.
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Chapter 5

Conclusions

This thesis tried to make apparent the problems that arise with mobile develop-

ment and usage of mobile devices when used in mobile environments. Mobile devel-

opment includes the usage of user tests that cannot always be conducted in controlled 

environments. User tests were performed to confirm that remote user testing is possi-

ble even with mobile hardware. Aside from the user tests an introduction was given to 

the architecture of a real world mobile application that tries to be as flexible as possi-

ble while still being manageable. In the related work section an overview is given of 

the current state of research and technologies for mobile devices. Overall the approach 

was to give an overview of the current state of mobile application design. For more 

detailed information, the references can be used.

The original research questions named in the introduction and given below 

were answered in the course of the thesis but will be summarized here. The questions 

were:

• What solutions are currently at hand for the problems with mobile 

devices caused by outside environments (light, noise, movement) applicable to the 

interface and input capabilities?

• Is it possible to do user testing where users are in their natural mobile 

environment, instead of a controlled laboratory environment?

The first is a difficult question it seems, current research does not take into 

account the external influences named in the question. Applications are begin 

designed for mobile devices, not for mobile usage. User tests are usually being con-
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ducted in controlled, and stable, environments. The application discussed in this paper 

tried two different interfaces, an interface targeted at inside use and one for outisde 

use, but will eventually settle for a customizable interface that users can change while 

the application is running. This offers a better chance for users to work with an inter-

face they prefer and matches their current situation. Until enough research has been 

done to provide definite guidelines to design for mobile usage this would seem to be a 

reasonable solution for the time being. An interesting start would be to research what 

customizations users would prefer in such an interface.

The second question can be answered positively, the smaller user test con-

ducted for this thesis was a success and the data collected was usable enough to extend 

the user test for further analysis when more data is gathered.  A thing to take into con-

sideration when taking this approach is to provide enough stimuli for users to actually 

perform the user test. The manual for user testing should be extensive enough for even 

new users to be able to handle the device to do the user test. And a central contact 

point should be available when trouble arises. For example when the software 

becomes corrupted or to check if multiple users have a certain problem.

Finally, a third goal was introduced; the development of a generic framework 

and a prototype of a ported PC application using this framework. Both the develop-

ment of the framework and prototype were finished within the alotted time. While the 

prototype is not a finished product it does give potential users a good idea of how an 

actual mobile version of the existing PC version would look and behave. The proto-

type was more than sufficient for the planned user tests and the framework supporting 

the prototype proved to be very flexible but still give enough performance to display 

and play all the media featured in the prototype. The framework is currently in use on 

a different platform (PocketPC) and the prototype was able to run without many alter-

ations to the code on this very different platform.
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Chapter 6

Future Work

A useful study to extend the current research would be to analyze the results 

from the first user study. The amount of data is tenfold that of the second smaller user 

test. Analyzing the results should provide interesting data on how users might prefer 

the different interfaces in different circumstances; the users in the smaller user test that 

was used in this thesis were all in the same conditions. A number of additional user 

tests should be performed separating the different features of the interface. For exam-

ple the input mechanism or font size could be tested separately. This will give a clearer 

view of what causes better or worse usability and what users prefer in different situa-

tions and conditions.

The PSP application discussed in this paper is being ported to the Pocket PC 

Platform currently, this was one of the reasons the application architecture was 

designed as is discussed in this thesis; to be easily portable. The process of porting an 

application to a different platform and device is a very common situation. This process 

will show if the application architecture was designed well enough and if the interface 

is easily adaptable. Future research could describe common known problems and 

apply them to an actual field case where the Tactical Language PSP application is 

ported from the PSP to the Pocket PC. This would provide a way of proofing the cur-

rent design of the application and the usefulness of the ‘Interface Manager’.

As has been mentioned in the previous section, customizable interfaces are 

another solution to the problems arising in mobile interface design. Instead of deciding 

for the user, the user can decide how the interface should look or be adapted. This 

might be worth to research, in order to find to what degree users should be able to 
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change the interface. This can again be evaluated by user tests, providing the user with 

different interfaces each featuring a different degree of customizability. Also men-

tioned in the previous section is to perform research to find what particular parts of an 

interface users would prefer customizable. Giving a fully customizable interface to 

users might force them to evaluate the different choice combinations, which would 

also be undesirable if the customization space (the number of options the users can try) 

is too large.
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Appendix A

PSP User Test Manual

Thank you for participating in this research. This document will give a brief 

introduction to the application you will be using on the PlayStation Portable®.  In a 

few simple steps the research procedure will be explained:

1.Make sure the Tactical Language PSP research application has been installed 

on the PSP. You can check this by powering on the PSP and selecting: Game->Memo-

ryStick. An icon containing ‘Tactical Language & Culture’ should appear. If this icon 

is missing please contact someone related to the PSP application.

2.Start the application. You can start the application by selecting (X-button) 

the icon you found in step 1.

3.After the application has started the introduction screen should appear. You 

can continue by pressing the ‘Start’ button on the PSP. (Note: If for some reason the 

PSP is unresponsive, move the cursor using the analog-pad (located below the direc-

tional buttons) and then press the ‘Start’ button).

4.The next screen is a help screen containing an overview of the buttons used 

within the application. You can view this screen from the main menu too. Press any 

button to continue to the main menu. (Technical help and details on backside of this 

document)

5.The main menu consists of a couple of buttons. The ‘Help’ button on screen 
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will return you to the previous screen with the layout of the buttons. It is recommended 

that you first follow the tutorial (the first button in the main menu). You can select a 

button by moving the cursor (by using the analog-pad located below the directional 

buttons) to it and pressing the X-button.

6.If you missed the help screen: press the Right trigger to go to the next page, 

press the Left trigger to go to the previous. You can move the cursor with the analog-

pad (located below the directional buttons).

7.After finishing the tutorial you’ll have to finish one lesson indicated by 

‘Start’. After the lesson you’ll receive an ID Code that you will have to fill in on the 

questionnaire. Afterwards you return to the main menu. We ask you to remain in the 

same physical location with the same physical conditions (light, movement, etc) when 

doing the lesson.

8.After selecting ‘Start’ you are asked to fill in a few research questions. You 

can either move the cursor with the analog-pad or using the directional buttons (up / 

down button). See backside of this document for further details, using the analog stick 

is called the ‘Analog version’, using the directional buttons is called the ‘Digital ver-

sion’.

9.When you have finished the lesson fill in the questionnaire using the ID Code 

provided at the end of the lesson and either contact a person involved with this 

research or mail the log files written to the PSP to this address: rpheuts@isi.edu. You 

can find the log files in the root directory of the PSP, named: lesson.log<timestamp> 

(for example: lesson.log8181113).
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Appendix B

PSP User Test Questionnaire
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Appendix C

Interface Manager API Example
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